pfema三要素是风险量化评估、列出原因/机理、寻找预防/改善措施。PFMEA:过程(Process)FMEA,用于过程设计中的可靠性分析,分析对象是新的产品/过程、更改的产品/过程。一般在生产工装准备之前开始使用PFMEA,一直到产品正式投产阶段,投产后还要根据生产过程的变化不断地更新PFMEA。为帮助大家深入了解,本文将对产品潜在的失效模式及后果分析的相关知识予以汇总。如果您对本文即将要涉及的内容感兴趣的话,那就继续往下阅读吧。
FMEA失效模式和效果分析FailureModeandEffectAnalysis。FMEA失效模式和效果分析是一个“事前的行为”,而不是“事后的行为”。为达到最佳效益,FMEA必须在故障模式被纳入产品之前进行。
焊点可靠性通常是电子系统设计中的一个痛点。各种各样的因素都会影响焊点的可靠性,并且其中任何一个因素都会大大缩短焊点的使用寿命。随着电路板中的焊点越来越小,而它们所承载的机械、电气和热力学负载越来越重,对稳定性的要求也日益提高。然而,在实际加工过程中也会遇到PCBA焊点失效的问题。有必要分析并找出原因,以避免再次发生焊点故障。电路板常见的焊接缺陷有很多,下面就常见的焊接缺陷、外观特点、危害,以及原因分析进行详细说明。
随着科学技术和工业生产的迅速发展,人们对机械零部件的质量要求也越来越高。材料质量和零部件的精密度虽然得到很大的提高,但各行业中使用的机械零部件的早期失效仍时有发生。通过失效分析,找出失效原因,提出有效改进措施以防止类似失效事故的重复发生,从而保证工程的安全运行是必不可少的。
失效分析的基本概念:失效分析对产品的生产和使用都具有重要的意义,失效可能发生在产品寿命周期的各个阶段,涉及产品的研发设计、来料检验、加工组装、测试筛选、使用等各个环节,通过分析工艺废次品、早期失效、试验失效、中试失效以及现场失效的样品,确认失效模式、分析失效机理,明确失效原因,最终给出预防对策,减少或避免失效的再次发生。
失效分析可以找出IC芯片故障部位、失效原因和机理,从而提供产品改进方向和防止问题发生的意见,它为设计者、生产者、使用者找出故障原因和预防措施。失效分析对改进产品设计,选材等提供依据,并防止或减少断裂事故发生;通过失效分析还可以预测可靠性;可以提高机械产品的信誉,并能起到技术反馈作用。
一般检测实验室会根据失效模式和现象,通过分析和验证,模拟重现失效的现象,找出失效的原因,挖掘出失效的机理的活动。在提高产品质量,技术开发、改进,产品修复及仲裁失效事故等方面具有很强的实际意义。其方法分为有损分析,无损分析,物理分析,化学分析等。
接插件也叫连接器。国内也称作接头和插座,一般是指电器接插件。即连接两个有源器件的器件,传输电流或信号。公端与母端经由接触后能够传递讯息或电流,也称之为连接器。接插件可靠性是其最重要的性能,我们在使用接插件的时候,对一些常见的影响接插件可靠性的因素,可以记录下来,仔细研究和分析其失效的原因,找到原因以后再提出如何提高接插件可靠性的一些设想。在这里为大家整理了五种接插件失效的常见原因,一起来看一下吧。
防止工作介质从泵内泄漏出来或者防止外界杂质或空气侵入到泵内部的装置或措施称为密封,被密封的介质一般为液体、气体或粉尘。机械密封也称端面密封,其有一对垂直于旋转轴线的端面,该端面在流体压力及补偿机械外弹力的作用下,依赖辅助密封的配合与另一端保持贴合,并相对滑动,从而防止流体泄漏。机械密封的故障大体上都是由异常变化引起的泄漏、磨损、扭矩等导致的,造成机封失效的原因主要有以下三点:
电子元器件技术的快速发展和可靠性的提高奠定了现代电子装备的基础,元器件可靠性工作的根本任务是提高元器件的可靠性。电子产品失效通俗来讲,狭义上的失效指的是机电产品丧失功能的现象,而失效分析则是分析诊断失效的模式、原因和机理,研究采取补救预测和预防措施的技术活动和管理活动,同时,与之相关的理论、技术和方法相交叉的综合学科则称之为失效学。