FMEA(Failure Mode and Effects Analysis)失效模式与影响分析,是一种常见的风险管理工具,可以用来识别和评估系统、设备或产品中可能存在的失效模式和其对系统、设备或产品的影响,以及开发相应的纠正和预防措施,降低潜在的风险和损失。常见的可用到FMEA失效模式分析的项目包括:生产管理;设备应用;过程管理;工程管理;焊接技术;系统控制与运行;频度;物流管理;软件分析;注塑;机加工; 印刷;PCB;供暖系统等等。
MOS管是金属(metal)—氧化物(oxide)—半导体(semiconductor)场效应晶体管,或者称是金属—绝缘体(insulator)—半导体。MOS管的source和drain是能够对调的,他们都是在P型中构成的N型区。在多数状况下,这个两个区是一样的,即便两端对调也不会影响半导体器件的性能。这样的器件被以为是对称的。目前在市场应用方面,排名第一的是消费类电子电源适配器产品。排名第二的是计算机主板、NB、计算机类适配器、LCD显示器等产品。第三的就属网络通信、工业控制、汽车电子以及电
在早期失效阶段,有缺陷的、受污染的或处于临界状态的电子元器件会在这个时期失效而暴露出来。这个阶段时间很短,有的元器件仅几天便会失效,早早地便被淘汰。正常失效期为元器件的正常工作阶段,也是元器件的寿命期限。本文收集整理了一些资料,期望能对各位读者有比较大的参阅价值。
可靠性,是质量控制的一个分支。但是把可靠性提升到一个专门技术来看待,是产品不断追求的一个必要阶段。可靠性研究的两大内容就是失效分析和可靠性测试(包括破坏性实验)。两者之间是相互影响和相互制约的。因此,必须重视和加快发展元器件的可靠性分析工作,通过分析确定失效机理,找出失效原因,反馈给设计、制造和使用,共同研究和实施纠正措施,提高电子元器件的可靠性。
FMEA是在产品设计阶段和过程设计阶段,对构成产品的子系统、零件,对构成过程的各个工序逐一进行分析,找出所有潜在的失效模式,并分析其可能的后果,从而预先采取必要的措施,以提高产品的质量和可靠性的一种系统化的活动。为增进大家对产品失效分析FMEA的认识,以下是小编整理的失效分析FMEA项目相关内容,希望能给您带来参考与帮助。
在实际加工过程中也会遇到PCBA焊点失效的问题,焊点的失效一方面来源于生产装配中的焊接故障,如钎料桥连、虚焊、曼哈顿现象等;另一方面是在服役条件下,当环境温度变化时,由于元器件与基板材料存在的热膨胀系数差,在焊点内产生热应力,应力的周期性变化会造成焊点的疲劳损伤,同时相对于服役环境的温度,SnPb钎料的熔点较低,随着时间的延续,产生明显的粘性行为,导致焊点的变损伤。有必要分析并找出原因,以避免再次发生焊点故障。那么今天,就来给大家介绍一下PCB焊点失效分析的主要因素吧。
MOS管是金属(metal)—氧化物(oxide)—半导体(semiconductor)场效应晶体管,或者称是金属—绝缘体(insulator)—半导体。MOS管的source和drain是可以对调的,他们都是在P型backgate中形成的N型区。要正确测试判断MOSFET是否失效,重要关键是要找到失效背后的原因,并避免再犯同样的错误,本文收集整理了一些资料,期望能对各位读者有比较大的参阅价值。
伴随着生产制造和科技的发展趋势,涂/涂层原材料逐渐出現在我们的视线而且快速发展并遍及于人们日常生活。总体来说,将来对涂/涂层原材料技术性总的发展趋向是性能卓越化、高功能性、智能化系统和环保化等。根据失效分析一系列剖析认证方式,能够搜索其无效的直接原因及原理,其在提升产品品质、加工工艺改善及义务诉讼等领域有着关键实际意义。
机械零件由于某些原因丧失工作能力或达不到设计要求的性能时,称为失效。失效分析的结果,既可对零件的失效形式加以预测,又是零件选材的依据,同时又可以对合理制订零件的制造工艺、优化零件的结构设计,以及新材料的研制和新工艺的开发等提供有指导意义的数据。本文收集整理了一些资料,期望能对各位读者有比较大的参阅价值。
一般来说,芯片在研发、生产过程中出现错误是不可避免的。失效分析是判断产品的失效模式,查找产品失效机理和原因,提出预防再失效对策的技术活动和管理活动。随着人们对产品质量和可靠性要求的不断提高,失效分析工作也显得越来越重要,社会的发展就是一个发现问题解决问题的过程,出现问题不可怕,但频繁出现同一类问题是非常可怕的。