如今,电子组装技术中,人们的环保意识越来越强,从环保、立法、市场竞争和产品可靠性等方面来看,无铅化势在必行。无铅焊点是多元的共晶体,根据光的漫射原理,无铅焊点不会反光亮而呈“橘皮形状”。此外,焊料在凝固时还伴随着体积的收缩,其收缩率大约为4%,体积的缩小大部分是出现在焊料最后凝固的地方。
无铅焊点可靠性测试,主要是对电子组装产品进行热负荷试验(温度冲击或温度循环试验);按照疲劳寿命试验条件对电子器件结合部进行机械应力测试;使用模型进行寿命评估。目前比较著名的模型有低循环疲劳的Coffin-Manson模型,一般在考虑平均温度与频率的影响时使用修正Coffin-Manson模型,而在考虑材料的温度特性及蠕变关系时采用Coffin-Manson模型。
无铅焊点可靠性测试方法主要有外观检查、X-ray检查、金相切片分析、强度(抗拉、剪切)、疲劳寿命、高温高湿、跌落实验、随机震动、可靠性检测方法等。
外观检查:无铅和有铅焊接的焊点从外表看是有差别的,并影响AOI系统的正确性。无铅焊点的条纹更明显,并且比相应的有铅焊点粗糙,这是从液态到固态的相变造成的。因此这类焊点看起来显得更粗糙、不平整。另外,由于无铅焊料的表面张力较高,不像有铅焊料那么容易流动,形成的圆角形状也不尽相同。
因此检测仪器必须做一些参数或程序调整,自动光学检测仪(AOI)制造商已经推出了相应的解决方案,其中包括欧姆龙采用三色光源和不同的照射角度将焊点的三维形状用二维图像表示出来。
X-ray检查:无铅焊的球形焊点中虚焊增多。无铅焊的焊接密度较高,可以检测出焊接中出现的裂缝和虚焊。铜、锡和银应属于“高密度”材料,为了进行优良焊接的特性表征、监控组装工艺,以及进行最重要的焊点结构完整性分析,有必要对X射线系统进行重新校准,对检测设备有较高要求。
准自动焊点可靠性检测技术是利用光热法逐点检测电路板焊点质量的一种先进技术,具有检测精度高、可靠性好、检测时不须接触或破坏被测焊点等特点。检测时对印制电路板的焊点逐点注入确定的激光能量,同时用红外探测器监测焊点在受到激光照射后产生的热辐射。由于热辐射特性与焊点的质量状况有关,故可据此判定焊点的质量好坏。激光与焊点的对准和注入以及焊点质量差别均由计算机及相应的软件完成。
测试装置包括YJLG激光系统、红外探测系统、X-Y扫描工作平台以及由计算机控制的驱动系统、闭路电视监视系统、判读软件等五部分组成。此技术的焊点重缺陷检出率为100%,,其他缺陷检出率远高于人工检测。检测速度满足小批量生产需要,特别适用于可靠性要求高、批量小的产品检测。
在无铅工艺焊点可靠性测试中,比较重要的是针对焊点与连接元器件热膨胀系数不同进行的温度相关疲劳测试,包括等温机械疲劳测试、热疲劳测试及耐腐蚀测试等。其中根据测试结果可以确认相同温度下不同无铅材料的抗机械应力能力不同,同时有研究表明不同无铅材料显示出不同的失效机理,失效形态也各不相同。
对制造商来说,可靠性属于比较高层次的考虑因素,但优良的制造工艺方面还是最重要的,没有先进的制造工艺就没有较高的可靠性。所以改进材料和工艺是解决采用无铅焊所出现的可靠性和失效缺陷的关键。
焊点在微电子封装产业中起着举足轻重的作用,相关设计、工艺均应引起充分重视。积极优化焊接工艺、找出失效模式、分析失效机理、提高产品质量和可靠性水平,对电子封装产业均有重要的意义。无铅焊点由于焊料的差异和焊接工艺参数的调整,必不可少地会给焊点可靠性带来新的问题。我们从设计、材料及工艺角度分析了影响无铅焊点可靠性的因素,如金属间化合物厚度增加、材料的热匹配问题、空洞问题、可靠性测试参数的改变等。
无铅化技术已经日趋成熟,但是在无铅化进程中还存在一些悬而未决的问题,如焊点的剪切疲劳、蠕变问题、虚焊现象、焊点热疲劳的主要变形机制、焊点的显微结构对焊点的疲劳行为的影响与作用机制等,都有待进一步研究。